

Microwave Scan Bias

Status Report

Bjorn Lambrigtsen

Background

Observations

- Substantial scan bias
- Scan bias is asymmetric
- Magnitude and asymmetry is location dependent

Status until now

- No sidelobe corrections applied in L1b so far
- L1b data slots exist for Ta and Tb (= Ta + sidelobe correction)
- Interim solution: Microwave tuning applied at L2 (pre-processing)

Ongoing effort

- Characterize the scan bias
- Develop sidelobe corrections to be applied at L1b
 - Remove scan bias
 - Allow estimates of local scene Tb from measured Ta

NOAA Method

1. Compute antenna efficiencies

Integral of antenna func. over solid angles:

- Earth
- Cold Space
- Spacecraft
- 2. Estimate effective measured antenna temperature
 - Ta ≈ fe Te + fc Tc + fs Ts
- 3. Solve for scene brightness temperature
 - Tb ≈ Te = (Ta fc Tc fs Ts) / fe

Assumptions

- a. All regions have azimuthal symmetry
- b. Spacecraft covers entire backside half-sphere
- c. fs is negligibly small -> See next slide!
- d. Te is uniform over entire Earth view

NOAA Method - cont.

Assumption of negligible contribution from spacecraft

- Based on computations by Aerojet:
 - Source in antenna near field reduces effective antenna efficiency by more than 10
 - · Spacecraft is in near field
 - Radiation emitted and reflected by Spacecraft can be ignored (<< 0.1 K)

Results

- Assumed radiometric field is azimuthally symmetric
- Therefore, any computed scan asymmetry is entirely due to asymmetric antenna function
- Computed asymmetry is then very small (fraction of 1 K)
- This may not account for observed asymmetries

Our Approach

Take into account actual S/C configuration

- Azimuthal-symmetry assumption is invalid
- Spacecraft does not cover entire half-sphere
- Space solid angle is larger than assumed and asymmetric
- Predicted effect: Negative bias on "space" side of scan

• Re-examine Aerojet's model of spacecraft radiation

- Reduced contribution may not apply to reflected radiation
- Predicted effect: Variable bias on "spacecraft" side of scan

Spacecraft Configuration

Effects of S/C Configuration

AMSU-A1

- Positioned at +y edge of S/C corresponds to right side of scan
- Sees space in ~1/4-1/2 of backside half-sphere
 - · Leads to cold bias at right swath edge
- Sees S/C in other 3/4-1/2 of half-sphere (causes bias if Aerojet is wrong)
 - Leads to cold bias where cold space is reflected
 - Leads to variable bias where off-boresight Earth radiation is reflected

AMSU-A2

- Positioned at -y edge of S/C corresponds to left side of scan
- Sees space in ~1/2-1/8 of backside half-sphere
 - Modulated by Solar Array
 - · Leads to variable cold bias at left swath edge
- Sees S/C in other part of half-sphere
 - Leads to scene dependent and latitude dependent bias at right swath edge

HSB

- Positioned near -y edge, but sees mostly S/C (not space)
 - Leads to variable bias from SA reflections (left side of scan)
 - Leads to smaller cold bias from structural reflections (right side of scan)

Proposed Algorithm

Measured antenna temperature is

Ta =
$$fe \cdot Tb + fc \cdot Tc + \eta \cdot fs \cdot Ts$$

where

The first term represents Earth radiation

fe is computed from antenna patterns

Tb is the (unknown) scene brightness temp. - assumed uniform across Earth

The second term represents direct space radiation

fc is computed from antenna patterns over actual space solid angles

Tc is space brightness (3.9 K for AMSU ch. 8)

The third term represents Earth and space radiation reflected from the S/C

fs is computed from antenna patterns over actual S/C solid angles

Ts is the effective reflected radiation - initially, Te = Tb or Tc

 η is the effective S/C reflectivity - assumed the same for all channels

Solve equation for Tb

We will use channel-8 Obs-Calc to determine best value for η

Scan Bias Estimate

Approximation:

Ta = Obs; Tb = Calc;
$$\Delta T$$
 = Ta - Tb (bias)

$$\Delta T = Ta - (Ta - fc \cdot Tc - \eta \cdot fs \cdot Ts)/fe$$

$$\Delta T \approx -\text{fc} \cdot \text{Ta} - \text{fsc} \cdot \text{Ta} - \text{fse} \cdot (\text{Ta} - \eta \text{Te})$$
 (note: fe+fc+fs=1)

where

the first term represents bias due to direct space radiation the second term represents bias due to space radiation reflected from the S/C the third term represents bias due to reflected off-boresight Earth radiation

Approximation is based on fe ≈ 1; fc,fs << 1; Tc << Ta

Positive bias can occur only if $\eta Te > Ta$ e.g., in window channels)

In the polar regions it may be possible to have reflected solar radiation contribute to the third term, resulting in a positive bias

Efficiencies: Ch. 1-2

Dotted line: fc Green line: fc+fsc

Red line: fss

Efficiencies: Ch. 3-6

Efficiencies: Ch. 7-15

Reference: AMSU Ch. 8

Why channel 8?

- No surface effects
- Relatively low variability in radiometric field
- "Truth" is relatively well known

Red:

Obs-Calc

Black:

-fc•Tb

Green:

Red:

Obs-Calc

Black:

-fc•Tb

Green:

Red:

Obs-Calc

Black:

-fc•Tb

Green:

JPL

Bias Comparisons - Ch. 8

Obs-Calc

Black:

-fc•Tb

Green:

JPL

Bias Comparisons - Ch. 8

Obs-Calc

Black:

-fc•Tb

Green:

Implementation Strategy

For L1b

- Implement baseline algorithm
- Determine f-tables
- Determine optimal S/C effective reflectivity (η)
- Test against model data

For L2

- Install switch to select Ta or Tb
- Match with tuning selection

Tuning

- If sidelobe correction is good: skip MW tuning
- If only fairly good: recompute MW tuning coefficients
- If poor: use current MW tuning

What's Next?

Radiometric benchmark

- Identify best "truth"
- Use to baseline correction method

Spacecraft environment

- Determine exact space-view solid angles
- Classify reflection angles & determine solid angles
 - Space
 - Earth
 - Sun

Baseline bias corrections

Static approach (no scene dependence)

Future improvements

- Dynamic corrections
- Include possible solar reflection